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Summary of some of the things in Kervaire Milnor. We want to cover the content in [KM63] in
particular section §7 and [KM13].

1 Survey of [KM63]

First all manifolds are compact, smooth and oriented. All maps are orientation preserving. The aim
of this paper is to prove that the set of h-cobordism classes of homotopy spheres of dimension n, Θn,
(closed manifolds with the homotopy type of an n sphere) is finite. One reason to do this is because
for n ̸= 4 it is known that this set is in bijection with the set of differentiable structures on the n
sphere. Thus we are bounding how many exotic spheres there are. This is done using group theory.

§2 is dedicated to showing that Θn is a group under the operation of (smooth) connected sum.
The key result in this section that we need to highlight is the following criteria for something to be h-
cobordant to the standard sphere. By the h-cobordism theorem this is the same as being diffeomorphic
to the standard sphere, or in this context to being in the equivalance class of the identity in Θn:

Lemma. A simply connected manifold is h-cobordant to the sphere Sn iff it bounds a contractable
manifold.

One way to understand this is that a contractable manifold with a simply connected boundary (by
the h-cobordism theorem) is diffeomorphic to the standard disc (see my notes on smooth structures
on the sphere and h-cobordism). Anyway KM show that the operation is well defined on h-cobordism
classes, and defines a group operation (checking inverses, associativity and identity). It is also clear
that the operation is abelian.

§3 is a discussion of the concept of stabily parallelizability, defining it and giving some necissary
and / or sufficient conditions for things to be s-parallelizable. §4 defines the subgroup bPn+1 ⊆
Θn of homotopy spheres that bound parallelizable manifolds (in this case it is equivalent to be s-
parallelizable or just parallelizable). They then use the Pontryagin-Thom construction to define a
group homomorphism

p : Θn → πs
n
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into the stable n stem, such that its kernel is bPn+1, hence we have that Θ/bPn+1 ⊆ πs
n which is finite

by Serre. Recal the the Pontryagin-Thom construction defines a bijection between(
Maps M → Sn/smth homotopy

)
→ Manifolds/framed cobordism

f 7→ f−1(p), p a regular value

The boundary of a parallelizable manifold can be immbeded in Sn+k and then we consider the map
Sn+k → Sk given by the Pontryagin-Thom construction on Sn+k with the framing coming from the
trivialisation of the normal bundle of the imbedded boundary. This is an element of the required stable
stem.

What remains is to show that bPn+1 is finite, this will imply that Θn is finite, since its quotient
by a finite thing is finite. The argument is now indexed by n+ 1 and is an argument mod 4. For odd
n+ 1 then bPn+1 = 0. For n+ 1 ≡ 2 (mod 4) then it is either trivial or Z/2Z. So the most interesting
case is n+ 1 ≡ 0 mod 4.

2 A Sketch of n ≡ 0, 1, 2

Just a sketch, insofar as it is relevant to our understanding of the modulo 3 case, and summary.

2.1 Odd values of n+ 1

This is the meat of the paper and is dealt with through §5 for the n ≡ 0 case and §6 for n ≡ 2 case.
It is still not clear to me why these two cases are seperated, and in particular why n=2 we have to
deal with orientation issued but not in the n=0 case? The idea in these sections is to apply the lemma
above and show that the homotopy spheres of dimension n bound a contractable manifold (and are
therefore trivial).

The setup is now that we have a dimension n homotopy sphere, where n ≡ 0, 2 and we assume that
it bounds an s-parrallelizable manifold of dimension n+ 1. That is we consider M an s-parallelizable
n + 1 manifold with boundary a homotopy sphere. We now “perform surgery” to M to construct an
M ′ which has the same boundary but is contractable. This implies that the boundary, our homotopy
sphere is Sn.

The process is as follows, first it is sufficient to construct a space whose homotopy groups are all
zero becuase by Whiteheads theorem this implies that the space is homotopic to the disc, that is in
particular contractable. We need something that has the same boundary and whose homotopy groups
are smaller; Milnors construction is for n = p+ q + 1 to consider an imbedding

φ : Sp ×Dq+1 → M

and then construct χ(M,φ) as(
M \ φ(Sp × 0) ⊔Dp+1 × Sq

)
/
(
φ(u, tv) ∼ (tu, v), u ∈ Sp, v ∈ Sq, t ∈ (0, 1]

)
Remark. Notice that the disjoint union is with Dp+1 × Sq, in particular the boundary of the first
terem is the thing which we have imbedded, Sp, while the other thing we have immbedded Dq+1 has
the boundardy Sq. Picture here.

Note here that infact the disjoint union of M and χ(M,φ) boundas another manifold, the so called
surgeons suitcase. In particular these two manifolds are co-bordant. They are not diffeomorphic as
the cobordism is not necissarily simply connected (so cant apply h-cobordism).
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Lemma. The boundary of χ(M,φ) is equal to the boundary of M and moreover for p < q or p ≤ n/2−1
we have that

πi(χ(M,φ)) =

{
πi(M), i < p

πi(M)/⟨φ|Sp×0⟩, i = p

Thus spherical modification below the middle dimension is sufficient to kill homotopy groups repre-
sented by embeddings. When M is s-parallelizable and p < n/2 all homotopy elements are represented
by some such embedding.

So now we have a manifold of dimension n + 1 that is s-parallelizable and whose boundary is a
homotopy sphere. We know that all the elements of its homotopy groups for πi are representable by
embeddings of this form for i < n/2 + 1/2. Finally we know that for i < n/2 − 1/2 we can kill the
homotopy group elements represented by these embeddings. Thus we may assume that we have an
n + 1 dimensional manifold that is n/2 − 1/2 connected, that is s-parallelizable and whose boundary
is a homotopy sphere. Because we have that n ≡ 0, 2 mod 4, we see that if n = 4k, 4k + 2 then the
space is 2k − 1/2 or 2k + 1/2 connected respectively. In particular we see that if we are in the 2 mod
4 case we have that we are 2k connected while in the 0 mod 4 case we are only 2k − 1 connected
at this stage. We see that the difference between these two cases is the connectedness in the middle
dimension. There is another dimensional restriction, in that we only know a priori that for n ≥ 2p
the modified manifold is still s-parallelizable. So there are clearly some subtelties to deal with, with
regards to s-parallelizability and the middle dimension.

The final part of the argument is to apply Hurewicz theorem to our highly connected space and
instead of attacking the homotopy groups in the middle dimension we consdier the cohomology groups
in the middle dimension. Notice by Poincare duality we also know that the higher cohomology groups
are also already zero and so all that remains is the middle dimensions. Indeed cohomological tech-
niques (exact sequences) are used to show that spherical modification can kill the middle dimension
cohomology which then proves that all the homotopy groups are zero.

2.2 Congruent to 2

This is §8, and I didnt really go through any details. The idea is to define a cohomology operation
and then use it to prove a sufficient condition for triviality. The next thing is to show that non-trivial
things are related to the Arf invariant which lands in Z/2Z. Something like that.
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3 The Order of bP4k

This is dealt with in §7 in [KM63] however the details of this calculation are largely outsourced to
[KM13]. In this setting we are considering a 4k dimensional manifold, whose boundary is a homotopy
sphere. Because we are in a dimension that is a multiple of 4 we can use the signature to our advantage.

Lemma (Lem 7.3). Let M be as above, then its homotopy groups can be killed by a series of framed
spherical modifications iff the signature is zero.

That is the kernel of the signature is exactly the manifolds that can be surged to the disk. Note that
the forward direction here is simply that surgery creates a manifold co-bordant to the original manifold
and since the signature is a co-bordism invariant it doesnt change the signature. The converse relies
on the analysis of §6 to show when framed spherical modifications are available. I think understanding
this lemma more deeply could be worthwhile.Lance thm 5.2, how does that fit with what I have said
here?

3.1 Some Black Boxes

An almost parallelizable manifold is a manifold with a designated point Mn, x0 such that M − x0 is
paralllelizable. Given an immbedding into Rk, for k > 2n+ 1,this is equivalent to the normal bundle
of M − x0 being trivial.

We will take the following facts about almost parallelizable manifolds and the J homomorphism
for granted:

1. π4n−1(SOm) ∼= Z, by Bott periodicity, for m > 4n.

2. The J homomorphism is defined on π4n−1(SOm) → π4n−1+m(SOm), and has a finite cyclic
image, therefore for some jn ∈ Z we can (by above) identify it with a map

J : Z → Z/jnZ

3. For a connected almost parallelizable 4n manifold the top cohomology is

H4n(M ;π4n−1(SOm)) ∼= π4n−1(SOm) ∼= Z

Proof. The coefficient group is still just Z by above and then this follows from Poincare du-
ality, as connectedness implies that there is one path component and so the zeroeth homology
is just the free abelian group on the path components which is just Z .

4. If we embed M4n into Rm+n for large m, and f is a section of the normal bundle of M −x0 then
the obstruction to extending f to all of M is a class

o ∈ H4n(M ;π4n−1(SOm))

5. For a 4n almost parallelizable manifold all pi[M ] = 0 for 0 < i < n, that is only the top classes
can be non-zero.

Proof. [Kos93, IX. (8.2)] shows that every an almost trivial bundle is always the pullback
along a degree one map of a bundle over the sphere (collapse map). So in particular the tangent
bundle of an almost parallelizable manifold, which is by definition almost trivial, is such a
pullback. Thus the characteristic classes, as they are natural in pullbacks, are characteristic
classes of some bundle over the sphere, which must be zero in degrees below the top dimension
(as the cohomology groups of the sphere are zero).
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3.2 Almost Parallelizable Manifolds

In [KM13] follow a proof of Rohlin and simply ask which steps generalise. Denote by

an =

{
2, n odd

1, else

then [KM13] show that

Theorem. The Pontryagin numbers define a surjective map

almost parrallelizabl 4n manifolds → jnan(2n− 1)!Z

In particular the image is a subgroup of Z .

Step 1. First we need to show that the kernel of the J homomorphism is preciselly the homotopy
classes which correspond to obstructions to parallalizing an almost parallelizable manifold, this makes
sense applying the isomorphism of (3) above. To make this precise we have:

Lemma. Given a section of the normal bundle of M4n − x0 ⊆ Rm+n, f , then

J(o(f)) = 0

Where we identify o ∈ H4n(M ;π4n−1(SOm)) with its image in either π4n−1(SOm) or Z .

They prove something much stronger, but we dont need it.

Proof. Uses the Pontryagin-Thom construction and the definition of the J-homomorphism
given by twisting such framed cobordism classes.

Step 2. Next we relate the Pontryagin numbers of almost parallelizable manfolds to their obstruction
classes. In particular

Lemma. If we denote ν the normal bundle of M4n ⊆ Rm+n and we take a section of this normal
bundle restricted to M − xo call it f then

pn(ν) = ±an(2n− 1)! o(f)

Again they prove a much stronger statement.

Proof. Relate the SOm bundle to Um bundles. Um obstructions are chern classes/pontryagin
classes up to a sign. Pullback the Pontryagin classes via the maps relating SOm bundles to Um
bundles and use natrality to relate them. Computations of Bott give explicitly what these pullbacks
are, they are multiplication by the required numbers.

Step 3. Whitney sum formula relates the normal and tangent bundles Pontryagin classes as

2 = 2p(ν ⊕ τ) = 2p(ν)p(τ)

because their sum is the trival bundle, moreover because the top cohomology is known to be Z we can
in fact cancel the two away to see that

p(τ) = p(ν)−1

Because all lower classes are zero we get that in fact, 1 + pn(τ) = (1 + pn(ν))
−1, which we can see

(1 + α)(1− α) = 1− α2 = 1
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because α2 is in too high a cohomology class. Thus pn(τ) = −pn(ν), or

pn(τ) = ±an(2n− 1)! o(f)

From the first lemma o is in the kernel of J and hence is divisible by jn. In particular there is some
element α ∈ H4n(M ;π4n−1(SOm)) ∼= Z such that o = jnα, hence

pn(τ) = ±an(2n− 1)! jnα

This shows that the image of the Pontryagin numbers is certainly in the subgroup we claimed. To see
surjectivity it is sufficient to find an element mapping to the generator of this subgroup, as Pontryagin
numbers are additive, namely mapping to jnan(2n− 1)!. By definition we have the following ses

0 → jkZ → π4k−1(SO) ∼= Z → Z/jkZ → 0

and because jk is in the kernel of J we know by lemma 1 that there is some required manifold
corresponding to it.

Remark. [Kos93, Thm. 8.7] gives some more explicit construction of such a manifold.

Remark. It is an immediate corrolory by applying the Hurzebruch signature theorem and the fact
that lower Pontryagin classes are zero that the signature defines a surjective map

almost parrallelizable 4n manifolds → 22n−1(22n−1 − 1)Bnjnan/nZ

Remark. This number can be shown by other means to be an integer, thus proving that the order
of Jπ4n−1(SO) is a multiple of the denominator of Bnan/4n.

Remark. In particular this manifold has a non-zero signature, note that it is by assumption con-
nected and without boundary (I think). Given this 4k manifold we can simply remove the interior of
a 4k disk around x0 which gives us a parallelizable manifold whose signature is non-zero (see below)
and whose boundary is in fact the standard sphere. Notice that in fact it is the standard sphere
that is bounding a manifold that cannot be made to be contractible via spherical modifications, so in
particular the fact that spherical modifications cant be used is not sufficient to show that the element
is non-trivial in the group Θn.

3.3 Back to bP4k

Lemma. The signature defines a map from all 4k manifolds that are which are s-parallelizable and
bound the standard 4k−1 sphere to the integers. The image of this map is 22m−1(22m−1−1)Bmjmam/mZ.

We will denote the integer σm = 22m−1(22m−1−1)Bmjmam/m > 0 the generator of this subgroup.

Proof. By the analysis in the previous section it is sufficient to see that the signature does
not change when we remove the interior of a disc from a manifold. This is clear because given the
almost parallelizable manifolds above we can simply remove the interior of a disc around the base
point and therefore obtain a (s) parallelizable manifold with the required signature.

We recall that the signature of a manifold is just the signature of the pairing

H2n(M ;Q)⊗H2n(M ;Q) → Q

(a, b) 7→ (a ⌣ b)[M ]

If we consider the inclusion D4n ↪→ M4n then by the LES in cohomology we get that

· · · → Hi−1(D4m) → Hi(M,D4n) → Hi(M) → Hi(D4n) → Hi+1(M,D4n) → · · ·
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because we are in the case of 4n for n > 1 the middle dimension of 2n is such that H2n±1(D4n) = 0
and thus we get that H2n(M,D4n) ∼= H2n(M). Next apply excision to the pair (M − Dn, ∅) ↪→
(M,D4n) to see that

M2n(M,D4n) ∼= H2n(M −D4n)

Thus we see that H2n(M) ∼= H2n(M −D4n). Both of these isomorphisms clearly hold in dimension
4n as well and so we have the result.We now pray that the isomorphisms given by excision and the
LES are natural (commute) with respect to cup products and the result follows.

Lemma. Let (M, bM) = (M1, bM1)♯(M2, bM2) be the connected sum along the boundary of two s-
parallelizable manifolds bounded by homotopy spheres. Then σ(M) = σ(M1) + σ(M2).

Proof. Discussed here. [DFN90, Thm. 27.5] proves the simplest case, that is however not
sufficient here, that is additivity when we glue the full boundary. [Wal69] states that glueing along
a submanifold of the boundary that does not itself have a boundary also works, using the same
proof. The proof relies on some decompositions of the homology into a direct sum of peices that
are related to the peices of the gluing and the gluing maps.

In the KM case however we have that M ∼ M1 ∨ M2 that is homotopy type of the gluing of
M1,M2 at a single point (they are glued along a disk which is contractible). The signature is also
a homotopy invariant (according to [MS16, Cor 19.6]). It is then clear from Mayer-Vietoris that

H4k(M1 ∨M2) ∼= H4k(M1)⊕H4k(M2)

which we again pray is natural in the cup product. This also clearly holds in dim 2k as well.

Lemma. Let [Σ1], [Σ2] ∈ bP4k that bound s-parallizable manifolds M1,M2 respectively. Then [Σ1] =
[Σ2] iff σ(M1) ≡ σ(M2) (mod σm).

Proof. Let Σ1,Σ2 and M1,M2 be as in the statement.

Forward: Consider a h-cobordism W between −Σ1♯Σ2 and the standard sphere (which exists
because Σ1

∼= Σ2 by hypothesis). Glue W onto (−M1,−bM1)♯(M2, bM2) along the common bound-
ary given by −Σ1♯Σ2, that is the connected sum that also connected sums the boundary. This
gives a manifold bounded by the sphere S4m−1 that we denote M . M is s-parallelizable (we are in
the case that s-parallelizable iff parallelizable, and it is intuitively clear that the connected sum of
parallelizable manifolds should be parallelizable) and so we know by the previous lemma that its
signature lands in σmZ or equivalently that

σ(M) ≡ 0, (mod σm)

But by the additivity of the signature we have that

σ(M) = −σ(M1) + σ(M2)

and so we get that
σ(M1) ≡ σ(M2), (mod σm)

Converse: Assume that σ(M1) ≡ σ(M2), (mod σm), in particular there is some s-parallelizable
4k manfiold M0 bounded by the sphere such that

σ(M1) = σ(M2) + σ(M0)

Again we take the connected sum along the boundary

(M, bM) ..= (−M1,−bM1)♯(M2, bM2)♯(M0, bM0)

7

https://mathoverflow.net/questions/106237/additivity-of-signature


which has boundary given by the connected sum of all the boundary components

−Σ1♯Σ2♯S
4k−1 ∼= −Σ1♯Σ2

as the standard sphere is the unit in the group of homotopy spheres. Taking the signature of this
connected sum we get that

σ(M) = σ(M0)− σ(M1) + σ(M2) = 0

hence by the lemma above we may use surgery to kill the homotopy groups of M and therefore
construct a contractable manifold that is bounded by −Σ1♯Σ2 which is therefore h-cobordant to
the standard sphere. Thus by the group operations we have that

−Σ1♯Σ2
∼= S4k−1 =⇒ Σ2

∼= Σ1S
4k−1 =⇒ Σ1

∼= Σ2

That is if we mod out by the pathological spaces which bound the standard sphere then the
signature is a complete invariant for homotopy spheres being diffeomorphic. This amounts to showing
that the map

bP4k → 4k s- parallelizable manifolds bounded by a homotopy sphere → Z → Z/σmZ

Σ 7→ M such that ∂M = Σ 7→ σ(M) 7→ [σ(M)]

is a well defined group , where s-parallelizable spaces bounded by a homotopy sphere are given the
operation connected sum along the boundardy. Moreover this map is injective, as if the signature is
zero we know that by Lem 7.3 the manifold can be made to be contractible and hence the space in
bP4k bounds a contractible manifold and is therefore the standard sphere. Hence we get that bP4k for
k > 1 is isomorphic to a subgroup of Z/σmZ, which is itself finite cyclic and therefore we can conclude
that bP4k is finite, cyclic and that its order divides σm.

Remark. [KM63] claim that an integer occurs as a signature in this way iff it is congruent to 0
modulo 8, they give no reference saying it will appear in part 2. This would imply that in particular
the order of bP4k is exactly σk/8.Go find a proof of this.
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